Epidemiologic Notes and Reports

Farm-Tractor Associated Deaths - Georgia

From 1971 to 1981, a study to characterize Georgia deaths associated with farm-tractor accidents was undertaken as a basis for developing preventive recommendations. For each death certificate listing a farm-tractor accident as the cause or contributing cause of death, information was abstracted concerning the characteristics of the victim and the accident.

Two hundred two tractor-associated fatalities occurred in Georgia during the study period; $198(98 \%)$ of the victims were male; $166(82 \%)$ were white, and $30(15 \%)$ were black. Accidents occurred during all months-but predominantly in March, April, July, and August-and throughout the day, with a peak between 4 and 5 p.m. All deaths involved persons living in rural areas. Accidents occurred in 103 of Georgia's 159 counties, but were concentrated in the mountainous and hilly northern counties (Figure 1). Most accidents happened on farms; 18 occurred on roads.

The majority of deaths occurred among older men. Data from the U.S. Census and the Department of Agriculture permitted estimation of fatality rates for Georgia males. Based on figures for the subpopulation of male farm residents, the crude annual fatality rate was 23.6/100,000 (Table 1). Farming was listed as the primary occupation for 82 persons; other listings included construction, manufacturing, common laborer, military, sales, mechanic, student, and retired.

A variety of events resulted in fatal injury: 153 persons (76%) were fatally injured when the tractors overturned; 28 were run over; and six drowned when their tractors fell into a stream or lake. Eighty-three percent of fatalities were attributed to crushing chest injury; other causes of death were external hemorrhage, strangulation or asphyxia, and drowning.
Reported by JD Smith, DL Rogers, RK Sikes, DVM, State Epidemiologist, Georgia Dept of Human Resources; Div of Field Svcs, Epidemiology Program Office, CDC.
Editorial Note: This study suggests that farm-tractor associated deaths are more likely to occur during the planting and harvesting seasons and during late afternoon hours, that acci-
TABLE 1. Annual fatality rate* for deaths associated with farm-tractor accidents Georgia, 1971-1981

Age group	Number of deaths	Mortality rate*
<20	21	6.7
$20-39$	32	22.3
$40-59$	65	27.6
$\geqslant 60$	80	54.1
Total	198	23.6

'Deaths/100,000 male farm residents.

Farm-Tractor Deaths - Continued
dents are more prevalent in north Georgia, and that older males are the most common victims. Although the total number of persons using tractors on farms is unknown, the higher incidence in north Georgia may result from an increased likelihood of tractors overturning on hilly terrain, and the higher fatality rates among older men may be due to physiologic impairment or other age-related factors. A preliminary review of 16 fatal farm-tractor accidents in 1982 indicates that most accidents involved tractors over 10 years old with small horsepower (20-40 hp) that were not equipped with roll-over protection structures.

The large proportion of fatalities associated with rollovers implies the need for improved measures to protect the users when tractors overturn. Such measures are commercially available and include different types of roll bars or protective cabs; however, current safety standards require the use of roll-over protection structures only in limited circumstances and do not apply to farm owners or their families. The increased risk of fatality among older men may indicate that educational efforts can be directed at specific groups. Deaths represent the most extreme consequence of tractor accidents, and a much greater number of serious and disabling injuries probably occur. Improved use of protective measures should prevent both morbidity and mortality due to farm accidents.

FIGURE 1. Farm-tractor associated deaths, by region - Georgia, 1971-1981

Reducing Exposures to Airborne Lead in Indoor Firing Ranges - United States

Between 1980 and 1982, the National Institute for Occupational Safety and Health (NIOSH) completed nine evaluations of exposures to lead in indoor firing ranges (1). Results show that exposure of shooters to airborne lead is greatly reduced by replacing traditional lead bullets with nylon-clad, copper-jacketed, or zinc ammunition.

Investigators conducted studies in municipal, state, and federal government firing ranges in Alabama, Georgia, Missouri, Nebraska, Ohio, Vermont, and Washington, D.C. Personal breathing-zone air samples were obtained to measure lead exposure of 90 persons firing weapons during qualifying tests with .38 caliber revolvers. The samples were analyzed for lead by atomic absorption spectrophotometry (2).

When shooters were firing lead bullets, their mean lead exposure was $110 \mu \mathrm{~g} / \mathrm{m}^{3}$, calculated as an 8-hour time-weighted average (TWA). Forty-two (89%) of 47 exposures exceeded the Occupational Safety and Health Administration (OSHA) standard (3) for occupational exposure to lead ($50 \mu \mathrm{~g} / \mathrm{m}^{3}$ as an 8-hour TWA) (Table 2). When nylon-clad, zinc, and copper-jacketed bullets were being fired, the mean exposures to airborne lead were 41, 22, and $10 \mu \mathrm{~g} / \mathrm{m}^{3}$, respectively, calculated as 8 -hour TWAs. While these alternate types of ammunition were being fired, three (7%) of the 43 samples studied exceeded the OSHA standard for occupational exposure to lead.
Reported by Hazard Evaluations and Technical Assistance Br, Div of Surveillance, Hazard Evaluations, and Field Studies, NIOSH, CDC.
Editorial Note: There are an estimated 16,000-18,000 indoor firing ranges in the United States (4) and an estimated 1,178,000 people employed in law enforcement (5). Hence, alternatives that reduce exposures to airborne lead in indoor firing ranges have important implications for the health and safety of these workers. Several previous studies have documented the occupational hazard of exposure to lead in indoor firing ranges, particularly among range masters and instructors (6,7). Major sources of such exposures are lead bullets (from which airborne particles are released during firing) and primers containing lead styphnate (a highly explosive compound used to initiate the combustion of gunpowder in the cartridge).

These exposures may be reduced by limiting the time a shooter or other person spends in the range and/or by improving the range's ventilation. In 1975, NIOSH developed criteria for the design and ventilation of indoor firing ranges (8). However, they are difficult to implement, particularly as "retrofits" of existing ranges, and high-efficiency ventilation is costly to install and operate. Also, while the criteria, when implemented, were sufficient to result in lead exposures below the then-current OSHA standard of $200 \mu \mathrm{~g} / \mathrm{m}^{3}$, their ability to produce levels meeting the current standard is less certain.

TABLE 2. Comparison of the concentrations of airborne lead in personal breathing zones of shooters firing various types of bullets - United States

Bullet type	Number of firing ranges	Number of air samples	Mean sampling time $(\mathbf{m i n})$.	Airborne lead levels $\left(\boldsymbol{\mu g} / \mathbf{m}^{\mathbf{3}}\right)$ Mean Range	Mean 8-Hour time- weighted average exposure $\left(\boldsymbol{\mu g} / \mathbf{m}^{\mathbf{3}}\right)$	
Lead	6	47	25	3,000	ND*-33,000	110
Nylon-clad	2	10	29	740	$400-1,200$	41
Zinc	4	22	36	150	ND-580	22
Copper-jacketed	3	11	20	300	ND-580	10

[^0]
Exposures to Airborne Lead - Continued

These circumstances have prompted the search for more utilitarian control technologies. Substitution of a less toxic substance for a hazardous one has been found to be an efficient and effective primary preventive measure in occupational safety and health. Results of previous laboratory investigations showed that substituting unleaded materials for lead bullets and primers could reduce lead emissions from those sources $(9,10)$. The present study documents the efficacy of this substitution under conditions of actual use.

There are disadvantages to the use of alternate bullets that must be considered; they include the increased cost of clad or jacketed bullets (although this cost in the long run may be less than that of operating a high-efficiency ventilation system) and possible safety hazards caused by the propensity of zinc bullets to "bounce back" from the bullet traps in some ranges.

References

1. National Institute for Occupational Safety and Health. Health hazard evaluation and technical assistance report nos.: HETA 80-000-011; HETA 80-079-753; HETA 80-072-755; HETA 81-010-890; HETA 81-019-846; HETA 81-470-1040; HETA 81-303-947; HETA 82-380-1219; and HETA 82-195-1200. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1980-1982.
(Continued on page 489)
TABLE I. Summary-cases specified notifiable diseases, United States

Disease	37 th Week Ending			Cumulative, 37th Week Ending		
	$\begin{array}{\|c\|} \hline \text { September } 17, \\ 1983 \\ \hline \end{array}$	September 18, 1982	$\begin{gathered} \text { Median } \\ 1978-1982 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { September } 17 \\ 1983 \\ \hline \end{array}$	$\begin{array}{\|c} \text { September } 18 \\ 1982 \\ \hline \end{array}$	$\begin{gathered} \text { Median } \\ 1978-1982 \end{gathered}$
Aseptic meningitis	508	400	400	7,070	5,707	4.819
Encephalitis: Primary (arthropod-bome \& unspec.) Post-infectious	76 3	80	67 3	1.070 61	988	802
Gonorrhea: Civilian	17,126	19,941	20,955	629,184	675,728	700,978
Military	524	621	525	17,165	19,229	19,590
Hepatitis: Type A	358	518	518	15,000	15,866	19,674
Type B	393	430	353	16,082	15,148	12,346
Non A, Non B	50	47	N	2,372	1,645	N
Unspecified	160	178	179	5,486	6,068	7.139
Legionellosis	9	20	N	493	413	N
Leprosy	5	4	2	177	148	133
Malaria	14	35	19	560	785	785
Measles : Total*	9	8	39	1,229	1,221	12,052
Indigenous	9	N	N N	1.020	N N	N
imported	31	${ }_{N}^{N}$	${ }^{\mathbf{N}}$	209	${ }_{2}{ }^{\text {N }}$	${ }^{\text {N }}$
Meningococcal infections: Total	31 31	45	30	2,080	2,257	1.990
Civilian Military	31	44 1	30	2,065 15	2,244 13	1,976 14
Mumps Military	19	53	53	2,455	4,261	7.113
Pertussis	29	37	41	1,598	1,069	1,069
Rubelia (German measles)	4	21	29	779	2,002	3,264
	656	752	549	22,730	23,357	18,719
Military	6 8	14 N	9 N	287	309	227
Toxic-shock syndrome Tuberculosis	r 8	N 507	N 507	16,510	${ }_{17,836}$	19,100
Tularemia	3	6	6	233	177	153
Typhoid fever	11	11	11	288	284	348
Typhus fever, tick-borne (RMSF)	40	27	23	1.027	827	874
Rabies, animal	115	137	109	4,302	4,588	4,588

TABLE II. Notifiable diseases of low frequency, United States

	Cum. 1983		Cum. 1983
Anthrax		Plague	34
Botulism: Foodborne (Ariz. 1)	14	Poliomyelitis: Total	4
Infant (N.C. 1, Utah 1, Calif. 1)	45	Paralytic	4
Other		Psittacosis (Calif. 2)	91
Brucellosis (Va. 1, Fla. 1, Tex. 3)	146	Rabies, human	2
Cholera	1	Tetanus (N.C. 1)	53
Congenital rubella syndrome (Calif. 1)	17	Trichinosis	26
Diphtheria Leptospirosis (Mo.1)	1 36	Typhus fever, flea-bome (endemic, murine)	40

- There were no cases of internationally imported measies reported for this week.

TABLE III. Cases of specified notifiable diseases, United States, weeks ending
September 17, 1983 and September 18, 1982 (37th week)

Reporting Area	Aseptic Meningitis	Encephalitis		Gonorrhea (Civilian)		Hepatitis (Viral), by type				Legionellosis	Leprosy	Malaria
		Primary	Post-infectious			A	B	NA,NB	Unspecified			
	1983	$\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1982 \end{aligned}$	1983	1983	1983	1983	1983	$\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$
UNITED STATES	508	1,070	61	629,184	675,728	358	393	50	160	9	177	560
NEW ENGLAND	13	43	-	15,978	16,178	5	17	1	8	2	3	26
Maine	2	-	-	798	822	-	1	1	-	-		1
N.H.	2	5	-	520	559	1	-	-	-	-	2	-
V t.	-	1	-	316	305	2	1	-	-	-	-	
Mass.	3	20	-	6,859	7.275	1	8	-	8	-		12
R.I.	-	1	-	894	1.097	-	2	-	-	2	-	3
Conn.	6	16	-	6,591	6,120	1	5	-	-	-	1	9
MID ATLANTIC	54	91	5	79.813	83,407	46	70	1	20	1	24	77
Upstate N.Y.	14	20	-	12,510	13,635	1	16	-	2	-	-	22
N. Y City	8	10	-	32,021	34,245	18	4	-	1	1	23	21
N.J.	-	16	-	15.054	15,398	17	25	1	14	-	-	22
Pa .	32	45	5	20.228	20.129	10	25	-	3	-	1	12
EN CENTRAL	108	364	20	88,170	97.079	20	34	4	12	1	5	43
Ohio	22	109	9	23,531	26,520	2	6	2	4	-	1	6
Ind	40	143	1	9,170	11,199	4	12	1	7	-	-	2
III.	5	17	7	22,900	27.602	2	7	1	-	1	2	16
Mich	41	68	-	24.512	23,082	12	9	-	1	-	2	14
Wis	-	27	3	8.057	8,676	-	-	-	-	-	-	5
W.N. CENTRAL	78	83	8	29,375	31,854	14	29	3	3	-	6	21
Minn.	-	19	1	4,182	4,570	9	1	1	-	-	4	6
lowa	18	46	-	3,293	3.358	-	1	1	-	-	-	3
Mo	51	14	-	14,004	15,174	3	27	1	2	-	1	2
N Dak	-	-	-	310	420	-	-	-	-	-	-	2
S. Dak	-	-	2	778	870	-	-	-	-	-	-	1
Nebr.	\square	3	-	1.927	1.944	1	-	-	-	-	-	1
Kans.	9	1	5	4,881	5,518	1	-	-	1	-	1	6
S ATLANTIC	112	155	15	163,733	177,346	39	105	10	21	2	9	85
Del	10	-	-	2,946	2,834	1	3	-	-	-	-	1
Md	10	18	-	20,873	22,039	2	16	1	2	-	1	14
D.C	2	7	-	11,210	10,174	-	4	-	1	-	-	13
Va	18	37	2	14,629	13,910	4	11	5	3	-	1	16
W Va.	4	26	-	1,764	2,008	2	2	-	-	-	-	1
N.C.	40	32	-	25,201	28,011	1	16	-	3	-	-	3
S.C	5	3	-	15,390	17,222	4	20	1	1	1	-	5
Ga.	8	6	1	32.574	35,192	3	7	1	1	-	1	8
Fla.	25	33	12	39,146	45,956	22	26	2	10	1	6	24
E. S CENTRAL	30	48	1	52,876	58,459	16	22	3	2	2	-	7
Ky	14	9	-	6,260	7.873	11	3	-	1	-	-	-
Tenn	9	13	-	21.826	22,957	2	8	1	1	$\overline{-}$	-	5
Ala	5	22	-	16,184	17.345	3	9	2	-	2	-	5
Miss.	2	4	1	8,606	10,284	-	2	-	-	-	-	2
W.S CENTRAL	31	123	2	90,192	93.219	92	46	2	62	-	22	52
Ark	1	6	-	6,961	7,720	2	1	-	6	-	-	1
La.	1	16	$\bar{\square}$	17.698	16,628	13	8	$\overline{-}$	3	-	1	8
Okla	9	25	1	10,423	10.261	12	6	2	3	-	-	10
Tex	20	76	1	55,110	58,610	65	31	-	50	-	21	33
MOUNTAIN	23	46	4	20.148	22,833	41	11	5	7	1	12	23
Mont.	2	2	-	840	942	1	1	-	-	-	-	,
Idaho	-	1	-	850	1.111	3	-	-	-	-	-	2
Wyo	-	2	-	529	670	1	4	2	1	-	2	1
Colo.	13	23	-	5,664	6,144	5	4	2	1	-	2	8
N. Mex	1	1	-	2,501	3,011	2	1	2	1	$\overline{-}$	-	5
Ariz	2	8	4	5.695	5,960	13	1	1	2	1	9	4
Utah	2	9	-	955	1.104	10	3		2	-	1	3
Nev .	5	-	-	3.114	3.891	6	1	-	-	-	-	-
PACIFIC	59	117	6	88,899	95,353	85	59	21	25	-	96	226
Wash	10	12	1	6,774	7.997	6	8	2	2	-	15	10
Oreg.	$3{ }^{-}$	$9{ }^{-}$	2	4,782	5,524	20	5	4	-	-	1	8
Calif.	36	98	3	73,217	77.586	58	45	15	23	-	56	207
Alaska	5	7	-	2,365	2,397	-	1	-	-	-	$\stackrel{-}{-}$	-
Hawaii	8	7	-	1.761	1,849	1	-	-	-	-	24	1
Guam	U	-	-	87	106	U	U	U	U	U	-	2
P.R.	5	-	1	1,827.	1.988	5	17	-	10	-	-	2
V. 1	-	-	-	188	200	-	-	-	-	-	-	-
Pac. Trust Terr.	U	-	-	-	338	U	U	U	U	U	-	-

N Not notifiable

TABLE III. (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending September 17, 1983 and September 18, 1982 (37 th week)

TABLE III. (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending September 17, 1983 and September 18, 1982 (37th week)

Reporting Area	Syphilis (Civilian) (Primary \& Secondary)		Toxicshock Syndrome 1983	Tuberculosis		Tularemia Cum. 1983	Typhoid Fever Cum. 1983	Typhus Fever (Tick-borne) (RMSF) Cum. 1983	Rabies, Animal Cum. 1983
	$\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1982 \end{aligned}$		1983	$\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$				
UNITED STATES	22,730	23,357	8	505	16.510	233	288	1,027	4,302
NEW ENGLAND	475	402	-	4	467	4	11	6	23
Maine	15	4	-	-	27	-	-	-	6
N.H.	17	4	-	-	30	-	-	1	2
V t.	1	2	-	-	9	-	-		1
Mass.	295	265	-	-	250	3	9	2	9
R.I.	16	19	-	-	31	1	-	-	-
Conn.	131	108	-	4	120	-	2	3	5
MID ATLANTIC	2.869	3,195	-	117	2,950	1	49	24	201
Upstate N.Y.	202	343	-	40	499	1	7	6	68
N.Y. City	1.725	1,900	-	28	1,161	-	16	1	-
N.J.	561	434	-	16	632	-	20	8	22
Pa .	381	518	-	33	658	-	6	9	111
E.N. CENTRAL	1,143	1,430	-	78	2,199	2	46	70	394
Ohio	316	222	-	12	343	-	12	43	51
Ind.	89	143	-	17	246	-	3	6	28
III.	509	782	-	44	958	1	22	14	208
Mich.	165	215	-	-	537	1	9	6	12
Wis.	64	68	-	5	115	-	-	1	95
W.N. CENTRAL	273	398	1	21	509	70	9	51	637
Minn.	108	85	-	-	104	-	2	-	106
lowa	15	22	1	5	46	5	-	${ }^{-}$	159
Mo.	102	235	-	13	248	53	6	25	88
N. Dak.	2	7	-	-	6	-	-	1	62
S. Dak.	11	1	-	-	32	4	-	5	96
Nebr.	11	11	-	-	20	6	-	3	58
Kans.	24	37	-	3	53	7	1	17	68
S. ATLANTIC	6,130	6,306	-	97	3,373	13	43	427	1,431
Del.	25	16	-	6	32	-	-	4	5
Md.	375	348	-	8	276	5	7	37	596
D.C.	276	342	-	5	135	-	3	5	1
Va .	419	431	-	-	345	1	10	57	507
W. Va.	19	21	-	9	106	-	2	11	101
N.C.	580	503	-	14	498	6	3	176	19
S.C.	391	373	-	9	305	-	1	73	22
Ga.	1.118	1,317	-	20	630	1	2	65	159
Fla.	2,927	2,955	-	26	1,046	-	15	4	21
E.S. CENTRAL	1,572	1,618	1	32	1.474	17	7	93	297
Ky.	103	86	1	8	362	1	3	19	68
Tenn.	435	444	-	6	453	11	1	47	166
Ala.	627	603	-	7	381	-	1	22	63
Miss.	407	485	-	11	278	5	2	5	-
W.S. CENTRAL	5.977	6,083	1	64	1,981	99	40	342	826
Ark.	143	151	-	4	227	61	2	36	136
La.	1,246	1,392	-	13	266	3	3	1	21
Okla.	152	128	1	11	183	27	2	218	87
Tex.	4,436	4,412	-	36	1,305	8	33	87	582
MOUNTAIN	474	578	1	13	438	22	10	12	180
Mont.	7	3	-	-	34	5	1	6	66
Idaho	6	24	-	-	23	2	-	2	10
Wyo.	10	15	1		10	4	$\overline{-}$	2	11
Colo.	118	162	1	2	56	3	1	-	18
N. Mex.	128	142	-	1	86	3	1	-	7
Ariz.	119	121	-	7	181	1	5	-	33
Utah	18	16	-	3	30	3	1	1	6
Nev .	68	95	-	-	18	1	1	1	29
PACIFIC	3.817	3,347	4	79	3.119	5	73	2	313
Wash.	127	117	-	11	177	2	3	-	2
Oreg.	102	82	-	5	129	2	3	-	1
Calif.	3.527	3,059	4	53	2,597	1	65	2	295
Alaska	10	9	-	-	42	-	-	-	15
Hawaii	51	80	-	10	174	-	2	-	-
Guam	-	1	U	U	4	-	-	-	-
P.R.	648	500	-	9	347	-	-	-	40
V.I.	16	25	-	-	2	-	-	-	-
Pac. Trust Terr.	-	-	U	U	-	-	-	-	-

TABLE IV. Deaths in 121 U.S. cities,* week ending
September 17, 1983 (37th week)

Reporting Area	All Causes, By Age (Years)						P\&1"• Total	Reporting Area	All Causes, By Age (Years)						P\&1•• Total
	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	$\geqslant 65$	45-64	25-44	1-24	<1			$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	$\geqslant 65$	45-64	25-44	1-24	<1	
NEW ENGLAND	693	464	146	47	19	17	48	S. ATLANTIC	1,195	733	267	94	41	57	38
Boston, Mass.	194	116	45	15	7	11	20	Atlanta, Ga.	140	82	34	10	6	8	4
Bridgeport, Conn.	64	40	18	4	2	-	4	Baltimore, Md.	180	105	47	16	3	9	5
Cambridge, Mass.	20	17	2	1	-	-	5	Charlotte, N.C.	63	40	16	3	2	2	2
Fall River, Mass.	29	25	3	1	-	-	-	Jacksonville, Fla. §	87	76	1	1	4	2	4
Hartford, Conn.	62	40	14	5	1	2	-	Miami, Fla.	153	97	38	8	2	8	2
Lowell, Mass.	27	20	7	-	-	-	1	Norfolk, Va.	45	26	10	5	2	2	2
Lynn, Mass.	20	16	3	1	-	-	1	Richmond, Va.	82	44	26	9	3	-	7
New Bedford, Mass.	s. 10	8	1	1	-	-	-	Savannah, Ga.	26	14	9	1	1	1	7
New Haven, Conn.	70	41	18	8	2	1	2	St. Petersburg, Fla.	99	82	7	6	3	1	5
Providence, R.I.	57	41	10	3	1	2	5	Tampa, Fla.	77	46	16	6	4	5	3
Somerville, Mass.	5	3	1	3	1	-	-	Washington, D.C.	221	109	55	28	10	19	3
Springfield, Mass.	48	33	9	3	2	1	5	Wilmington, Del.	22	12	8	1	1	19	3
Waterbury, Conn.	32	21	9	1	1	-	2	Wilmington. Del.							
Worcester, Mass.	55	43	6	4	2	-	3	E.S CENTRAL	688	425	153	54	23	33	26
								Birmingham, Ala.	94	54	22	7	4	7	
MID ATLANTIC Albany, N Y.	2,445 56	1.649 39	499	177	58	62	93	Chattanooga, Tenn.	49	32	12	1	3	1	2
Albany, N.Y.	56	39	7	4	3	3	-	Knoxville, Tenn.	47	38	7	1	1	-	2
Allentown, Pa.	20 125	15	3	2	2	2	11	Louisville, Ky.	111	51	34	14	8	4	7
Buffalo, N.Y.	125	95	20	6	2	2	11	Memphis, Tenn.	180	110	36	17	6	11	5
Camden, N.J. Elizabeth, N.J.	42	26	7	6	-	3	1	Mobile, Ala	50	36	10	2	1	1	3
Elizabeth, N.J.	26	18	6	2	-	-	1	Montgomery, Ala.	55	40	6	4	-	5	2
Erie, Pa.t	42	30	8	3	-	1	2	Nashville, Tenn.	102	64	26	8	-	4	5
Jersey City, N.J.	5	36	11	6	$3{ }^{-}$	2	1	Nashvile, Tem.							
N.Y. City, N.Y.	1,403	925	290	113	38	37	43	W.S CENTRAL	1,298	778	292	98	68	61	39
Newark, N.J.	49	25	17	6	-	1	3	Austin, Tex.	55	43	6	3	2	1	1
Paterson, N.J.	26	18	6	5	2	5	1	Baton Rouge, La	47	26	12	8	1	-	3
Philadelphia, Pa. \dagger	198	125	48	15	5	5	8	Corpus Christi, Tex	50	32	9	3	3	3	
Pittsburgh, Pa.t	61	38	14	4	2	3	1	Dallas, Tex.	229	133	66	12	9	9	2
Reading, Pa.	33	25	2	5	1	-	2	El Paso. Tex.	61	33	17	3	5	2	2
Rochester, N. Y.	112 29	85	23	2	1	1	9	Fort Worth, Tex	100	51	29	10	6	4	6
Schenectady, N.Y.	29	22	6	-	1	-		Houston, Tex.	204	103	55	24	11	11	5
Scranton, Pa. ${ }^{\text {S }}$	24	18	6	-	-	-	2	Little Rock, Ark.	65	43	16	4	1	1	7
Syracuse, N.Y.	67 39	48	13	2	2	2	1	New Orleans, La.	163	94	32	12	7	18	
Trenton, N.J.	39 17	34 11	4	1	1		3	San Antonio. Tex.	197	130	35	13	13	6	8
Yonkers, N.Y	21	16	4	-	1	1	4	Shreveport, La	40	29	5	-	3	3	-
EN. CENTRAL	2,254	1,403	563	147	71	70	58	MOUNTAIN	662	445	145	46	11	15	22
Akron, Ohio	74	57	14	-	2	1	-	Albuquerque, N. Mex	75	53	15	2	3	2	
Canton, Ohio	41	29	11	1	-		4	Colo. Springs, Colo.	34	24	6	2	1	1	6
Chicago, III	488	295	123	46	18	6	12	Denver, Colo.	109	76	23	9	1	1	1
Cincinnati, Ohio	135	92	36	3	1	3	10	Las Vegas, Nev.	93	47	28	17	1	1	2
Cleveland, Ohio	158	95	45	8	4	6	2	Ogden, Utah	21	18	1	17	1	1	
Columbus, Ohio	135	74	34	11	6	10	2	Phoenix, Ariz.	153	110	32	6	2	3	
Dayton, Ohio	122	78	34	4	1	5	1	Pueblo, Colo.	19	16	3	-	-	.	1
Detroit, Mich.	287	148	75	35	17	12	2	Salt Lake City, Utah	51	30	8	5	2	6	
Evansville, Ind	43	32	11	-	-	,	2	Tucson, Ariz.	107	71	29	5	1	1	11
Fort Wayne, Ind.	65	41	18	2	2	2	3								
Gary, Ind.	12	6	5	1	2	4	-	PACIFIC	2,082	1,388	418	145	61	69	118
Grand Rapids. Mich.	. 66	45	12	3	2	4	1	Berkeley, Calif.	2,082	1, 12	2	2	61	69	118
Indianapolis, Ind.	163	94	42	12	4	11	1	Fresno, Calif.	78	45	16	6	4	7	5
Madison, Wis.	51	37	11	1	2	-	4	Glendale, Calif.	46	29	12	1	4	7	1
Milwaukee, Wis.	128	87	33	3	2	3	2	Honolulu. Hawaii	57	38	11	3	2	3	5
Peoria, III.	61	40	12	1	3	5	6	Long Beach, Calif.	53	31	17	1	2	2	3
Rockford, III.	45	31	9	2	1	2	2	Los Angeles, Calif	712	473	143	61	19	15	33
South Bend, Ind.	32	23	5	4	-	-	2	Oakland, Calif.	61	40	15	4	1	15	3 3
Toledo, Ohio	88	63	18	5	2		1	Pasadena, Calif.	38	30	1	3	1.	4	3
Youngstown, Ohio	60	36	15	5	4	-	1	Portland, Oreg.	131	91	25	5	5	4 5	3 9
								Sacramento, Calif.	80	45	22	5	3	5	5
W.N. CENTRAL Des Moines, ${ }^{\text {lowa }}$	826 96	550	180 21	37 3	25 4	30	35	San Diego, Calif.	173	114	28	14	7	10	19
Duluth, Minn.	32	25	6	1	4	1	8	San Francisco. Calif	195	133	39	14	4	5	4
Kansas City, Kans.	31	14	11		4	2	-	Seattle, Wash.	179	109	39	12 5	5	4	18
Kansas City, Mo.	135	86	37	5	-	3	3	Spokane, VJash.	+54	109 39	39 7	5 5	4	4	5
Lincoln, Nebr.	36	30	5	1	-	-	4	Tacoma, Wash.	48	30	12	4	1	2	
Minneapolis, Minn.	103	63	26	6	5	3	2		48	30	12	4		2	
Omaha, Nebr.	89 172	64 112	18	2	2	3	4	TOTAL	$12,143^{\text {tt }}$	7,835	2.663	845	377	414	477
St. Louis, Mo.	172	112	36	10	6	8	4								47
St. Paul, Minn.	58	44	6	5	-	3	2								
Wichita, Kans.	74	45	14	4	4	7	8								

[^1]
Exposures to Airborne Lead - Continued

2. National Institute for Occupational Safety and Health. NIOSH manual of analytical methods. 2nd ed. P\&CAM No. 173. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1977. (DHEW publication no. [NIOSH] 77-157-A.)
3. Occupational Safety and Health Administration. OSHA safety and health standards. 29 CFR 1910.1000. Occupational Safety and Health Administration, 1980.
4. National Institute for Occupational Safety and Health. Unpublished data.
5. Statistical Abstracts. Government Printing Office. Washington, D.C., 1981:182.
6. National Institute for Occupational Safety and Health. Health hazard evaluation and technical assistance report no. HETA 73-000-022. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1973.
7. Landrigan PJ, McKinney AS, Hopkins LC, Rhodes WW, Price WA, Cox DH. Chronic lead absorption: result of poor ventilation in an indoor pistol range. JAMA 1975;234:394-7.
8. National Institute for Occupational Safety and Health. Lead exposure and design considerations for indoor firing ranges. Cincinnati, Ohio; National Institute for Occupational Safety and Health, 1975. (DHEW publication no. [NIOSH] 76-130.)
9. National Bureau of Standards. The reduction of airborne lead in indoor firing ranges by using modified ammunition. Washington, D.C.: National Bureau of Standards, 1977. (National Bureau of Standards special publication no. 480-26.)
10. Fischbein A, Nicholson WJ, Weisman I. Comparative lead emissions from conventional and jacketed ammunition. Am Ind Hyg Assoc J 1980;41:525-7.

Patient-Source Scabies among Hospital Personnel - Pennsylvania

In early January 1982, a 60-year-old woman with severe diabetes mellitus and multiple end-organ complications was admitted to a Pennsylvania hospital with bacterial sepsis and shock; she had previously been a custodial nursing home patient. The patient died 5 days after admission. During her hospitalization, she was comatose and required total nursing care, including repeated physical contact by the floor nursing and support staffs. On admission, the patient had an excoriated, crusted rash covering her entire body that had been present for many weeks; retrospectively, it was believed to be crusted or Norweigan scabies. No other patients requiring extensive care contact had dermatologic problems on this unit during the same period.

Approximately 3 weeks after the patient's death, unit staff members began to report to the employee-health service with itching and red, scaly, skin lesions primarily on the anterior trunk and volar side of the arms. Epidemiologic investigation revealed that all the ill individuals had had frequent, close contact with the deceased. Staff members at risk of physical contact were identified, and on examination, 10 had skin rashes clinically compatable with scabies. Some of these individuals had already been treated with a scabicide by their private physicians. All had onset of rash about 2 weeks after the death of the index patient; the remaining 20 at-risk individuals without rash had considerably fewer intense physical contacts with her. There were no cleaning or food service personnel or orderlies, transporters, or other nonnursing-care staff in either the skin-rash or at-risk groups.

All individuals with rash were examined. Four had been previously treated, and their lesions were resolving. Five had lesions suitable for scrapings to detect mites; three of these had positive scrapings.

All 10 individuals were treated with lindane lotion and noted prompt relief of symptoms and resolution of rash. Surveillance over the next 8 weeks identified one possibly late primary case with the same clinical features as the original 10 and one suspected secondary case

Scabies - Continued
with hand-dominant localization. Both patients were treated by private physicians, with immediate symptom resolution.

After a year of total follow-up, no additional cases were reported.
Reported by SJ Pancoast, MD, JJ Kishel, Mercy Hospital, Scranton, Pennsylvania; Div of Vector-Borne Viral Diseases, Center for Infectious Diseases, CDC.
Editorial Note: Each patient in this outbreak had a rash distribution that included mainly the anterior trunk, upper legs, and volar arms. Classic hand involvement was conspicuously absent. The predominance of trunk and arm distribution reflects the mode of probable acquisition (body contact acquired by lifting and positioning the index patient). All affected staff members had repeated, close body contact without protective outerwear, frequently with bare arms and forearms. The lack of hand involvement can be partly attributed to frequent post-patient handwashing.

In many custodial, close-confinement situations with disabled patients, scabies is an endemic problem. When skin-rash outbreaks are reported among hospital personnel, even with an atypical distribution of skin lesions as in this case, scabies should be considered. The usual mode of transmission in such instances may be predominantly body-to-body contact.

All persons admitted to patient-care institutions should be examined for skin lesions. Those positive for scabies should be managed as having an infectious disease and isolated until cured to prevent spread among staff and other patients. This includes the use of gloves and, if indicated, gowns, while actually in contact with suspected or positive cases.

International Notes

Post-Smallpox Eradication Surveillance

In conformity with the 1980 recommendations of the Thirty-third World Health Assembly for post-smallpox eradication surveillance, the World Health Organization (WHO) is continuing to coordinate and participate in the investigation of suspected smallpox cases throughout the world.

Since January 1979, 143 reports of suspected smallpox have been received from 58 countries - 15 of them during the last 12 months. These reports were investigated by national health authorities or joint national/WHO teams, and when required, specimens were collected and tested by a WHO collaborating center for laboratory confirmation of diagnosis. Results of the investigation of 142 reports (one is still under investigation) showed that none was smallpox; they were actually misdiagnosed cases of chickenpox, measles, or diseases other than smallpox. These results further augment confidence in the absence of smallpox worldwide.

NIGERIA

The results of investigation of an outbreak of fever and rash disease reported by the press as smallpox are presented below. This is one example of a smallpox report that received international attention and was clarified through the joint efforts of WHO and the government concerned.

On November 19, 1982, a Nigerian newspaper published an article describing an outbreak of suspected smallpox with more than 17 cases that occurred in Onitsha prison in Anambra

Post-Smallpox Eradication - Continued
State. On November 23, the National WHO Program Coordinator in Lagos, Nigeria, brought this report to the attention of the national health authorities. By the middle of December 1982, the outbreak had already been investigated by a medical officer in Onitsha and a diagnosis of chickenpox made.

Meanwhile, the outbreak continued, and the report received international attention. In December, WHO was asked by scientists from the Federal Republic of Germany and the United States to clarify this report. At the request of the Smallpox Eradication Unit, WHO, the national health authorities further investigated the outbreak and collected specimens that were dispatched for testing at a WHO collaborating laboratory. The results of these investigations follow:

During January 23-26, 1983, a team from the Federal Epidemiological Division of the Ministry of Health headed by the Principal Health Superintendent with the participation of medical personnel of the Onitsha local government area visited the prison to investigate the outbreak, and confirmed the diagnosis of chickenpox.

The first cases occurred at the beginning of November, and by November 19, they totaled 20. From the outset, the outbreak was monitored by the Medical Officer of Health responsible for the Onitsha local government area. By November 30, there were 79 cases, and by December 14, 120 cases of chickenpox had been recorded. When the team from the Federal Epidemiological Division arrived at the end of January to carry out the investigation, the outbreak was still continuing, and four cases in the acute stage of the disease were noted.

Results of clinical examination showed that the distribution of rash, the stage of its development, the absence of lesions on the palms and soles, and other signs conformed with a diagnosis of chickenpox. Nevertheless, skin lesion specimens were taken from two of the patients, and some convalescent serum specimens were also collected from other persons. All these specimens were promptly sent to the WHO Collaborating Center for Poxvirus Diagnosis and Research at the Centers for Disease Control (CDC), Atlanta, Georgia, and the laboratory results were made available within a few days. The laboratory examination revealed herpes varicella particles in skin lesion specimens, thus confirming the clinical diagnosis of chickenpox. The results of the investigation were communicated to those persons in the Federal Republic of Germany and the United States who had requested WHO to clarify this report.
INDIA
At the beginning of June 1983, a daily newspaper in Patna (Bihar, India) published a photograph of a young girl with facial skin lesions. The case was diagnosed as chickenpox by local physicians. However, the newspaper caption read, "Smallpox, the dreaded disease, which was supposedly eradicated from Asia, has struck again in Patna." The photograph and comments were later reprinted in newspapers in other Indian States, as well as abroad. The report created concern, and WHO was asked by the members of the media whether or not the report was correct.

The Union Ministry of Health (New Delhi) sent officials with smallpox experience from the National Institute of Communicable Disease (New Delhi) to carry out an independent "on-the-spot" investigation. The patient, a 12-year-old girl, was located and examined. She had a scar indicating a successful vaccination against smallpox. Clinical and epidemiologic examination confirmed the diagnosis of chickenpox. Further skin samples were collected and sent to the National Smallpox Reference Laboratory, Delhi, and to the WHO Collaborating Center at CDC. No viruses belonging to the orthopoxvirus group were identified by these laboratory examinations.
Reported by WHO Weekly Epidemiological Record, 1983:58;226-7.

The Morbidity and Mortality Weekly Report is prepared by the Centers for Disease Control, Atlanta, Georgia, and available on a paid subscription basis from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, (202) 783-3238.

The data in this report are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday.

The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials. Such reports and any other mat ters pertaining to editorial or other textual considerations should be addressed to: ATTN: Editor, Monidity and Mortality Weekly Report, Centers for Disease Control, Atlanta, Georgia 30333.

Director, Centers for Disease Control	Editor	
William H. Foege, M.D.	Michael B. Gregg, M.D.	
Director, Epidemiology Program Office		Mathematical Statistician Carl W. Tyler, Jr., M.D.
	Kssistant Editor Karen L. Foster, M.A.	

\&U.S. Government Printing Office: 1983-646-136/851 Region IV
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

PUBLIC HEALTH SERVICE / CENTERS FOR DISEASE CONTROL
ATLANTA, GEORGIA 30333
OFFICIAL BUSINESS
Postage and Fees Paid
U.S. Department of HHS

HHS 396

S GHCRHBMCDJ73 8129
X
LEGİNNAIRE ACTIVITY
LFPROSY \& PICKETTSJAL BR
VIROLOGY DIV. CID
7-B5

[^0]: *None detected (below sampling and analytical limit of detection)

[^1]: - Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100.000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
 * Pneumonia and influenza
 \dagger Because of changes in reporting methods in these 4 Pennsylvania cities, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
 \dagger Total includes unknown ages.
 § Data not available. Figures are estimates based on average of past 4 weeks.

